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Mesenchymal stem cells (MSCs) have become a 
focus of interest in cell therapy and regenerative 
medicine due to their ability to differentiate 

into multiple cell types, modulate the immune system, and 
promote tissue repair. To fully achieve their therapeutic 
capabilities, it is crucial to understand the internal 
signaling mechanisms that regulate their decisions to 
differentiate, proliferate, age, or survive. In this context, 
mitochondria play a major role and act far beyond their 
traditional role in energy production.

Mitochondrial metabolism and dynamics have direct 
impacts on MSC stemness, differentiation, migration, 
survival, paracrine functions, and therapeutic efficacy. 
In their undifferentiated state, the metabolism of MSCs 
depends on glycolysis for energy, which preserves reactive 
oxygen species (ROS) levels low and maintains a basic 
mitochondrial structure that supports their stem-like 
qualities. As MSCs begin to differentiate, their energy 
demands increase; a metabolic shift toward oxidative 
phosphorylation (OXPHOS), increased mitochondrial 
biogenesis, and the development of a more mature 
mitochondrial architecture occur.1 The balance of 
mitochondrial dynamics, mediated by fission (Drp1/
DLP1) and fusion (Mfn1/2, OPA1), controls the MSC 
differentiation. Forni et al. showed that during MSC 
adipogenesis and osteogenesis, mitochondrial networks 
become elongated and fused via upregulation of Mfn1/2, 
while knockdown of Mfn2 impaired respiration and 
differentiation.2 Similarly, Feng et al. revealed that 
spontaneous differentiation is accompanied by reduced 
Drp1 and increased OPA1 expression.3 In this line, 
mitophagy, a cellular process where dysfunctional 
or damaged mitochondria are recycled, preserves 
mitochondrial homeostasis that is critical for MSC 
proliferation and differentiation potential. These studies 
highlight a mechanistic pattern: mitochondrial fusion 
shifts MSCs toward OXPHOS, enabling differentiation, 
whereas fission maintains a glycolytic, stem‑like state.

Beyond intrinsic dynamics, the most exciting discovery 
in MSC biology is their ability to transfer mitochondria 
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to damaged or stressed cells spontaneously, providing 
bioenergy and survival for recipient cells. This 
mitochondrial trafficking occurs via tunneling nanotubes 
(TNTs), gap junctions (e.g., connexin 43 channels), and 
extracellular vesicles.4 Both autologous and intercellular 
transfer of mitochondria impact the therapeutic potency 
of MSCs. In a study, Long et al. transferred autologous 
mitochondria into bone marrow MSCs (BM-MSCs). 
Mitochondria-recipient BM-MSCs exhibited enhanced 
proliferation, migration, osteogenesis, and ATP 
production; these effects were abolished by oligomycin, 
linking benefits directly to OXPHOS enhancement 
and translated into accelerated bone defect repair in 
rats.5 Complementing this, Yao et al. demonstrated that 
adipose‑derived MSCs receiving exogenous mitochondria 
exhibited a ~17 % rise in ATP, upregulation of cell‑cycle 
genes, and enhanced migration and secretome factors.6 

Intercellular mitochondrial transfer modulates the host 
environment with mixed outcomes. Studies in Achilles 
tendinopathy and lung injury models demonstrate that 
TNT-mediated mitochondrial transfer from MSCs to 
damaged cells protects injured tenocytes and alveolar 
epithelial cells by restoring aerobic respiration and 
preventing apoptosis.7,8 The preconditioning of MSCs 
with mitochondria also boosts the efficacy of MSC-based 
cell therapy. Co-culturing of MSCs with cardiomyocyte-
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derived mitochondria boosted their regeneration 
capacity by inducing ROS production and activating 
mitophagy.9 However, tumor microenvironments 
exploit this mechanism: MSCs transfer mitochondria to 
glioblastoma stem cells (GSCs), boosting OXPHOS and 
chemoresistance against temozolomide.10 

Finally, the MSCs’ microenvironment impacts 
mitochondrial health and transfer. Pathological 
conditions such as hyperglycemia impair MSC 
mitochondria and trigger apoptosis; inhibiting their 
proliferation and differentiation.11 Furthermore, the fate 
of donated mitochondria (mitophagy) and their effect 
on the function and metabolism of the recipient MSC 
should be considered. In preconditioning studies, the 
cellular source for mitochondrial isolation would be 
important, as it is reported that transferred mitochondria 
alter MSC properties based on their cellular origin.12 
This interplay among mitochondrial turnover, metabolic 
state, and environmental context suggests that optimizing 
mitochondrial dynamics and transfer protocols will 
be critical for ensuring safe and effective MSC-based 
therapies.
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